On the Hamiltonian–Krein index for a non-self-adjoint spectral problem

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral Behaviour of a Simple Non-self-adjoint Operator

We investigate the spectrum of a typical non-selfadjoint differential operator AD = −d2/dx2 ⊗ A acting on L(0, 1) ⊗ C, where A is a 2 × 2 constant matrix. We impose Dirichlet and Neumann boundary conditions in the first and second coordinate respectively at both ends of [0, 1] ⊂ R. For A ∈ R we explore in detail the connection between the entries of A and the spectrum of AD, we find necessary c...

متن کامل

Spectral Asymptotics of the Non-self-adjoint Harmonic Oscillator

We obtain an explicit asymptotic formula for the norms of the spectral projections of the non-self-adjoint harmonic oscillator H. We deduce that the spectral expansion of e−Ht is norm convergent if and only if t is greater than a certain explicit positive constant.

متن کامل

9 Self - adjoint extensions and spectral analysis in Calogero problem

In this paper, we present a mathematically rigorous quantum-mechanical treatment of a one-dimensional motion of a particle in the Calogero potential αx−2 . Although the problem is quite old and well-studied, we believe that our consideration, based on a uniform approach to constructing a correct quantum-mechanical description for systems with singular potentials and/or boundaries, proposed in o...

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

A Non-Self-Adjoint Problem in Heat Conduction

Linear boundary value problems in heat conduction have been investigated extensively for a diverse variety of boundary conditions, but almost invariably these have been of the type that produce self-adjoint problems. The property of selfadjointness makes it possible to obtain readily the solution of steady and unsteady-state heat conduction problems in the form of a series expansion of orthogon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2018

ISSN: 0002-9939,1088-6826

DOI: 10.1090/proc/14048